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Abstract. The quadrupole coupling (QC) tensors of the deuterons in all hydrogen positions 
are reported for the paraelectric (p)  phase of triglycine sulphate (TGS), while for the ferro- 
electric ( f )  phase we restrict ourselves to the deuterons in the 'long' and 'short' hydrogen 
bonds and to the ND3 deuterons of glycine GI .  In addition, the orientation dependence of 
the spin-lattice relaxation rate 1/T, of the ND, deuterons of G I  and the temperature 
dependence of 1/T,  of the C D 2  deuterons are reported for the p phase. It is shown that the 
QC tensors and the relaxation rates of the ND, and C D 2  groups of GI can be described well 
by a dynamic order-disorder model of the phase transition. Any displacive-type model can 
be ruled out. The temperature dependence of the order parameter p is determined. The 
C D 2  - ND3 group of GI flips as a rigid unit between the two sides with a correlation time t,. 
The ND3 group reorients in addition about the C-N bond with a correlation time E , .  At T = 
T, + 6 K,  t, = (2.1 ? 0.2) X lo-" s,  t, = (1.3 i: 0.2) X lo-" s; t ,does  not vary measurably 
in the temperature range from T, to T, + 40 K. At  the phase transition there is no critical 
slowing down of the flip rate. The QC tensors of the CD2 deuterons are used for a significant 
refinement of the neutron diffraction structure determination Of  TGs. 

1. Introduction 

Matthias et a1 (1956) discovered the ferroelectric properties of triglycine sulphate (TGS). 
This triggered a long series of investigations of this compound by a wide variety of 
methods. The dynamics of the various molecular units in TGS was studied, in particular, 
by proton and nitrogen nuclear magnetic resonance (NMR) and, as well, by deuteron 
NMR of specifically deuterated crystals of TGS, to be called DTGS (Bjorkstam 1967, Blinc 
eta1 1961,1966,1967,1971, Brosovskietall974, Buchheim andGrande 1975, Buchheim 
et a1 1976, Grande et a1 1978, Hoffmann and Szczepaniak 1979, Losche 1966, Losche et 
a1 1970, Muller and Petersson 1976, Slosarek 1983, S16sarek et a1 1982, Stankowski 1981, 
Stepisnik and Slak 1975, Tsujimi et a1 1978). 

From these experiments the general conclusion has been drawn that the crucial 
molecular units for the phase transition are the NH3 group of the glycine ion GI on the 
one hand, and the hydrogen bond between the glycine ions GI1 and GI11 on the other 
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Figure 1. The arrangement of the molecular groups in the unit cell of triglycine sulphate 
(TGS). 

hand (cf figure 1). In labelling the glycine ions we follow the notation of Hoshino et a1 
(1959). Judging from the behaviour of the hydrogen bond between GI1 and GIII, the 
phase transition appears to be of the order-disorder type. This means that the hydrogen- 
bonding proton (deuteron) occupies one of two available positions along the hydrogen 
bond irregularly and with equal probability in the paraelectric phase ( p  phase), whereas 
in the ferroelectric phase ( f  phase) it occupies one of these positions preferentially. 

A displacive as well as an order-disorder model has been proposed to describe the 
dynamics and the role of the NH3 group of GI during the phase transition. The pro- 
ponents of the order-disorder model assert that in the p phase this group occupies one 
of two available positions left and right of the mirror plane designated MP in figure 1. 
Throughout the crystal the left and right positions are said to be occupied statistically, 
irregularly and with equal probabilities, i.e. the crystal is disordered. This model is 
supported most strongly by results of neutron scattering experiments, which indicate 
that the NH, group of GI occupies these two positions (Kay 1977). In figure 2 we show 
the GI ion in its two configurations. Note that scattering experiments do not allow one 
to tell whether the disorder is static or dynamic. In either case the plane MP is a mirror 
plane of the crystal only in a statistical sense. The 14N NMR data show that the disorder 
is dynamic (Blinc er a1 1971), i.e. the NH, groups are flipping back and forth between 
their sites left and right of MP. No data about the timescale of this flip process have been 
obtained so far. As the CO, end-group of the GI ion is, according to the neutron data, 
essentially motionless, the flips of the NH, group must be jumps around the central C-C 
bond of the glycine molecule. As the directions of the bonds of a carbon atom are very 
rigid, a flip of the NH, group results in a concomitant flip of the CH2 group (see figure 
2). In what follows we will, therefore, denote the flips as flips of the CH2-NH3 group. 
The flip process can then be studied by NMR and relaxation of the NH, (ND,) group and, 
as well, by that of the CH2 (CD,) group. 

According to the order-disorder model the two available positions of the CH,- 
NH3 group become inequivalent and therefore unequally occupied at the paraelectric- 
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Figure 2. The glycine ion GI  with its ND, head-group right (R) and left (L) of the plane MP. 
Note that the CD2 deuterons jump as well through a large angle whereas the other atoms of 
the ion remain nearly stationary. 

ferroelectric phase transition. The mean electric dipole moment connected with the 
NH3 group becomes non-zero at the transition and is considered to be the source of the 
spontaneous polarisation of the TGS crystal. 

According to the other model, the phase transition in TGS is, inasmuch as the CH2- 
NH3 group of GI is concerned, of displacive type. In the p phase the NH3 group of GI 
is claimed to occupy, together with the other heavy atoms of this glycine ion, a position 
right on the plane MP. The only motion of this group is supposed to be a hindered jump- 
rotation of the NH3 group about the C-N bond. If this picture is correct, and if we ignore 
the hydrogens, the plane MP is a genuine mirror plane. When the temperature is lowered 
below T, the NH, group moves, according to this model, away from the plane MP and 
results in the appearance of a spontaneous polarisation P,. This model has emerged from 
deuteron NMR studies of the ND, groups of crystals of DTGS (Blinc el all967, Bjorkstam 
1967, Hoffmann and Szczepaniak 1979). 

Proton spectra of the CH2 group have been observed by Hoffmann and Szczepaniak 
(1979) and have been interpreted on the basis of the displacive model of the phase 
transition. No data have been reported so far from deuterated methylene groups, CD,. 

In this paper we present results of deuteron NMR and relaxation measurements of 
specifically ND, and CD2 deuterated crystals of DTGS. The spectra from the CD2 group 
provide additional unequivocal evidence that the phase transition in TGS is of the order- 
disorder type. We then demonstrate by a realistic calculation of the quadrupole coupling 
tensor of the ND3 deuterons that the present and all previous NMR data from this group 
can readily be interpreted by the order-disorder model, and, in fact, contradict the 
displacive-type model. 

The spin relaxation of the ND3 group is shown to result from a complicated super- 
position of contributions from rotational reorientations of the ND, group about the C-N 
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bond and from flips of the whole CH2-ND, group. By contrast the relaxation of the CD2 
deuterons is completely dominated by the flips. The flips can, therefore, be more clearly 
studied by observing the CD, deuterons, while a study of the ND, group is necessary to 
gain information about the rate of the rotational jumps. Indeed, an analysis of the 
relaxation rates of the ND, and CDz groups in conjunction with a lineshape analysis of 
the spectra allows us to derive the rates of the CH2-ND3 flips and of the ND3 rotational 
jumps in the vicinity of the phase transition. 

2. Samples 

Triglycine sulphate, (NH: CH2COOH),(NH:CH2CO0-)SO~- (TGS), has been 
recrystallised three times from D 2 0 .  The product obtained by this procedure possesses 
deuterated-ND, groups and all the hydrogen-bond positions are occupied by deuterons 
as well. In what follows this material is denoted by DTGS(ND3). 

TGs with deuterated CD2 groups is denoted by DTGS(CD,). This material was pre- 
pared via perdeuterated glycine obtained by platinum-catalysed exchange with DzO: 
Adam's catalyst (PtO,.H,O) was pre-reduced by deuterium gas in D 2 0 ,  glycine-d3 
(obtained by repeated evaporation of glycine with D 2 0 )  was added, the glass vessel was 
evacuated and shaken at 150°C for 5 days. After isolation of the product a second 
exchange was made under identical conditions. The perdeuterated glycine obtained in 
this way was back-exchanged in the hydrogen-bond positions with H20 to obtain glycine- 
CDz. The deuteration grade was found by 'H NMR to be better than 95%. From glycine- 
CD2 DTGS(CD2) was prepared with H2S04 in the conventional manner. Single crystals 
of DTGS(CD~) and of DTGS(ND3) were grown by lowering a saturated HzO (resp. D 2 0 )  
solution of DTGS(CD2) (resp. DTGS(ND~)) from 41 "C to room temperature at a rate of 
0.1 "C h-l. 

From both types of crystals NMR samples were prepared in the form of cylinders 
about 6-8 mm long and just fitting into 5 mm NMR tubes. In the case of DTGs(ND,) the 
(1 0 l),  (0 10) and (70 1)* crystallographic axes were chosen as cylinder and, conse- 
quently, as rotation axes for recordingrotation patterns of line splittings and relaxation 
rates. For DTGS(CD~) the (0 l o ) ,  (2 0 1) and (1 02)* axes were chosen as rotation axes. 

3. Deuteron quadrupole coupling (QC) tensors 

3.1. Experimental results 

Deuteron spectra were recorded at v o  = 54 MHz either by Fourier-transform NMR or by 
subjecting the NMR time data to the Cambridge MEM procedure (Sibisi 1983). 

Figure 3 presents one of the spectra from the p phase of DTGS(ND,) obtained by 
Fourier transformation while figure 4 shows a Cambridge MEM spectrum of DTGS(CD~). 
In the figures we have indicated the assignment of the line pairs to the various deuteron 
sites in these crystals. The assignment is based on a comparison of orientations of the 
deuteron QC tensors with the deuteron-bond directions, known from structural studies 
on TGS (Kay 1977, Kay and Kleinberg 1973). 

For determining the deuteron QC tensors each sample crystal was rotated in the 
applied field Bo in steps of 5" or lo". From DTGs(ND,) sets of spectra were recorded at 
temperatures T = 281,303.5,316,322.5,327.5,331 and 338 K. The transition from the 
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Figure 3. Deuteron Fourier-transform spectrum of DTGS(ND,). Bo is perpendicular to the 
(101) axis and subtends an angle of 23.5" with the b axis; T = 338 K; the crystal i s  in its p 
phase. 
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Figure 4. Deuteron Cambridge MEM spectrum of DTGS(CD?). E,, 1. (102)*; & ( E , , ,  b )  = 28"; 
T = 333 K ;  p phase, D8, D9 arise from the C D ?  groups of the ions GII/III, D8' and D9' from 
those in the mirror reflected positions with respect to MP.  

f to the p phase occurred in these crystals at T, = 331.2 K. For the DTGS(CDJ crystals a 
full orientation dependence of deuteron NMR line splittings was only recorded in the p 
phase at 333 K. For this type of DTGS, T, = 322 K as in fully protonated crystals. Spectra 
from the f phase were only recorded for some special crystal orientations (see below). 
From the measured orientation dependences of the deuteron NMR line splittings the 
deuteron QC tensors were derived by standard fitting procedures. In table 1 we present 
the deuteron QC tensors for all deuterons in the p phase of TGS. The assignment of the 
QC tensors of the CD2 groups, of which there are no data in the literature, will be 
explained below. The other deuteron QC tensors from table 1 can be compared with 
results obtained by Blinc et a1 (1967), Bjorkstam (1967) and Hoffmann and Szczepaniak 
(1979). As regards the ND, groups our results are in essential agreement with previous 
measurements. On the other hand, our data for the deuterons in the short (SHB) and long 
(LHB) hydrogen bonds differ from those reported by Blinc et a1 (1967). The discrepancies 
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Table 1. Deuteron QC tensors of DTGS in p phase. All deuteron QC tensors not specified in the 
table can be obtained from those listed by applying appropriate symmetry transformations. 

LHB 204.8 
T = 338 K -116.3 
D1 -88.5 

SHB -48.1 
T =  338K -71.6 
D7 119.6 

ND3 -27.5 
GI -29.4 
T = 338 K 56.8 

D2 190.7 
T = 333 K -122.5 
VI -68.2 

ND3 78.8 
GII, GI11 -33.3 
T=338K -45.5 

D8 237.7 
T = 333 K -128.3 
VI,, - 109.4 

D9 240.1 
T = 333 K -128.5 
VI,, -111.6 

99.5 
88.0 
9.7 

85.1 
106.1 
16.9 

69.8 
89.3 
20.2 

115.6 
98.4 
27.2 

64.5 
55.4 
45.4 

122.5 
45.9 

118.4 

89.3 
162.3 
107.6 

0.2 

-11.9 

-9.3 
79.3 79.8 
97.0 

89.9 136.5 

358.1 

180.2 

117.0 
23.0 127.1 
96.3 

88.3 37.9 

-3.1 
106.1 52.6 
238.8 
316.2 
264.3 158.4 
205.9 

68.7 
340.9 160.1 
158.4 

0.136 

0.197 

0.034 

0.285 

0.155 

0.080 

0.070 

~~~~~ 

a In this and in all following tables the spherical coordinates e and Q, are defined with respect 
to the ‘standard orthogonal’ (SO) frame with x parallel to the crystallographic axis a ,  y in the 
ab-plane and z parallel to c * ,  where * refers to the reciprocal frame. 

The labelling of the deuterons follows that of table 1 of Kay (1977). D2 belongs to the CD2 
group of GI, D8 and D9 to that of GII, 111. 

concern the size of the quadrupole coupling constants, the asymmetry parameters and, 
as well, the temperature dependence of these QC tensors. Therefore, we also report the 
QC tensors of these deuterons in the f phase of DTGs(ND3) together with that of the ND3 
group of GI (see table 2). 

3.2. Discussion 

3.2.1. Deuterons in ‘short’ (SHB) and ‘long’ (LHB) hydrogen bonds. The quadrupole 
coupling constants (acc) of the deuterons in the SHB (79.8 kHz at T = 338 K) and LHB 
(136.5 kHz) are both exceptionally small on the scale of the QCC of deuterons in other 
O-D - 3 .  0 hydrogen bonds (Berglund et a1 1978). Drawing on the existing correlation 
between the 0-0 distance and the deuteron QCC (see figure 3(a) of Mayas et a1 1978), 
this implies that the SHB and LHB are both short and are hence strong hydrogen bonds. 
This statement is confirmed by Kay’s structure data (Kay 1977, Kay and Kleinberg 
1973), which give 0-0 = 2.49 8. (SHB) and 0-0 = 2.59 A (LHB). According to asimilar 
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Table 2. Deuteron QC tensors of DTGS in f phase. 

5937 

( a )  ND, group of glycine GI. 
~ ~ ~ _ _ _ _  ~ ~ _ _ _ _  

Eigenvector direction 

281.0 

303.5 

316.0 

322.5 

327.5 

331.0 

-25.8 
-47.0 

72.8 

-26.8 
-43.4 

70.2 

-26.8 
-40.5 

67.3 

-27.2 
-37.9 

65.1 

-26.9 
-34.9 

61.8 

-30.9 
-27.0 

58.0 

83.9 
90 2 29.0 
29.8 

83.9 
90 t 27.1 
28.0 

83.4 
90 t 25.4 
26.4 

84.2 
90 t 23.7 
24.5 

83.4 
90 t 21.7 
22.7 

70.3 
90 2 6.6 
20.8 

522.9 

180 T 56.3 

t24.9 

180 T 53.5 

227.6 

180 3 48.9 

t31.9 

180 T 45.1 

237.0 

180 3 37.1 

t39.9 

180 T 19.9 

90 * +9.5 48.5 0.291 

9 0 2  21.7 46.8 0.237 

90 t 24.4 44.9 0.204 

90 229.4 43.4 0.165 

90 t 34.4 41.2 0.129 

90 37.5 38.7 0.067 

(b)  ‘Short’ hydrogen bond (SHB). 

Eigenvector direction 
Temp. Eigenvalue QCC 

(K) (kHz1 e (deg) v (deg) (kHz1 77 

-55.0 
281.0 -78.2 

133.2 

-53.3 
303.5 -76.6 

129.9 

-52.0 
316.0 -75.1 

127.1 

-51.2 
322.5 -74.0 

125.1 

-49.9 
327.5 -73.2 

123.2 

-48.0 
331.0 -72.1 

120.1 

88.3 
90 T 16.3 
16.4 

87.5 
90 T 16.3 
16.5 

87.0 
90 T 16.3 
16.6 

86.7 
90 T 16.2 
16.6 

86.4 
90 T 16.2 
16.6 

85.7 
90 7 16.4 
17.0 

26.4 
9026 .9  88.8 0.175 

180 2 90.4 

58.6 
9 0 t  9.4 86.6 0.179 

180 2 90.0 

29.2 
9 0 t  10.1 84.8 0.182 

180 2 89.0 

29.2 
9 0 2  10.2 83.4 0.182 

180 f 88.1 

29.7 
9 0 2  10.8 82.1 0.189 

180 t 87.4 

28.6 
9 0 2  9.8 80.1 0.200 

180 t 84.2 
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Table 2 continued 

(c) ‘Long’ hydrogen bond (LHB). 

281.0 

303.5 

316.0 

322.5 

327.5 

331.0 

204.0 100.0 
- 116.8 93.5 
-87.3 10.6 

204.2 100.6 
-116.9 94.2 
-87.3 11.5 

204.3 100.6 
-116.6 92.3 
-87.7 10.8 

204.5 100.7 
-116.7 93.2 
-87.9 11.1 

204.8 100.6 
-116.4 92.8 
-88.3 10.9 

204.8 100.4 
-116.3 88.3 
-88.5 10.6 

0.6 
91.2 136.0 
20.4 

0.6 
91.4 136.1 
22.5 

0.7 
91.1 136.2 
13.0 

0.6 
91.2 136.3 
17.9 

0.5 
91.1 136.5 
15.6 

0.4 
90.1 136.5 
-8.9 

0.145 

0.145 

0.141 

0.141 

0.137 

0.136 

empirical but well established correlation between the QCC of the deuteron and the 
0-D stretching frequency vD (Berglund et a1 1978) we may infer from our results that 
vD is exceptionally small for the SHB, which renders the position of this deuteron a 
candidate for a crystal instability. The fact that the QCC of the deuteron in the SHB 
decreases smoothly as Tapproaches T, from below, whereas that of the deuteron in the 
LHB remains independent of T,  is direct evidence that the latter has nothing to do with 
the phase transition while the former plays a key role. 

3.2.2. ND, groups. The size of the QCC of a stationary N-bonded deuteron is about 
150 kHz (Hunt and MacKay 1974). The measured QCC of the ND3 deuterons of GII/III 
in the p phase of DTGS(ND,) is 52.6 kHz and thus roughly a third of the value of a 
stationary deuteron. This is immediate proof that the group is reorienting rapidly about 
the C-N axis and that the bond angles of the N atom are approximately tetrahedral. 

The QCC of the ND, group of GI is substantially smaller (37.9 kHz). This in itself is 
a strong argument that the dynamics of this group, which is really that of the CH2-ND3 
group, is more complicated than that of the ND3 groups of GII/III as is implied by the 
dynamic order-disorder model of the phase transition. In what follows we focus attention 
on the dynamics of this group. 

Let us denote the probability of occupation of each of the two positions of the ND3 
group asp, (left) andp, (right), respectively, withpL + pR = 1. In the f phasep, # pR,  
while in the p phasep, = pR = 0.5. In the f phasep, andp, change with temperature. 
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The average dipole moment connected with the ND3 group of GI equals 

P = PLPL + ~ R P R  (1) 

where pL and pR are the dipole moments of this group in its left and right positions. The 
spontaneous polarisation 

P ,  = 2 p / v  (2) 

is given by 

where po = pR = - pL and Vis the volume of the unit cell. The quantityp 
plays the role of the order parameter. 

(2pR - 1) 

The average QC tensor of the ND, group is given by 

with V ,  and V ,  being the oc tensors of the ND3 group occupying the left and right 
positions, respectively. 

In the p phase, where p = 0, all ND, groups of the macroscopic crystal possess the 
same QC tensor Vav. The experimental spectra show only one pair of lines from these 
groups. This is accounted for if we assume that the group rapidly reorients about the 
CKN bond and that the flip rate is fast on the scale of the quadrupole splittings, which 
is of the order of 50 kHz. In the f phase, when there is a domain structure in the 
macroscopic crystal, two pairs of lines will be observed, because there are regions with 
p > 0 (pR > pL) and others withp < 0 (pR < pL). 

Below we calculate VaV for the ND3 group of GI as a function of p. This requires a 
knowledge of VL and V,, which is not available directly from experiment. We calculate 
V,  on the basis of the following two assumptions: 

(i) At each of the three rotational positions of the ND3 group the instantaneous QC 
tensor of a deuterium nucleus is axially symmetric about the N-D bond. 

(ii) The QCC is given by the empirical formula of Hunt and MacKay (1974): 

Qcc(kHz) = 253 - 572/R3 ( 5 )  

where R is the distance (A) between the oxygen and the deuterium atom in the N- 
D e . .  O bond. For each of the deuteron positions D 4 D 6  the distance R and the direction 
of the N-D bond are derived from the neutron structure data of TGS in the f phase (Kay 
and Kleinberg 1973). The labelling of the deuterons follows that of Kay and Kleinberg 
(1973). The structure of DTGS in the paraelectric phase is essentially the same inasmuch 
as the ND3 group of GI is concerned (Kay 1977). Using equation (5) the following QCC 
are obtained: 

N-D4 : R = 1.84 A QCC(4) = 161.2 kHz 

N-D5: R = 1.72A QCC(5) = 140.6 kHz 

N-D6: R = 1.96A QCC(6) = 177.0 kHz. 



5940 G Sldsarek et a1 

Table 3. QC tensors of the ND3 group of glycine GI for p = 0 and p = 1 calculated on the 
basis of the structure of TGS. 

-23.1 70.8 0.0 

53.2 19.2 180.0 

-21.3 78.6 347.5 

73.0 28.9 236.1 

0 -30.2 90.0 90.0 0.134 

1 -51.7 63.8 83.2 0.416 

The components V$!, k = 4 , 5 , 6 ,  of the QC tensor of each of the deuterons D4, D5 
and D6 are given by: 

Vi$) = bacc(k)[3 sin26(k) cos2g?(k) - 11 

= $QCC(k)[3 sin26(k) sin2q(k) - 11 

v$$’ = bQCC(k)[3 COS26(k) - 1) 

Vi:) = &occ(k) sin 6 ( k )  cos 6(k )  cos q ( k )  

V$)  = bQcc(k) sin 8(k )  cos 6(k )  sin ~ ( k )  

Vi;) = ~ Q C C ( ~ )  sin2 8 ( k )  sin q ( k )  cos q ( k )  

where O(k) and q ( k )  are the polar angles of the direction of the N-Dk bond in the x ,  y ,  
z reference frame. Because of the assumed rapid rotational jumps of the ND, group the 
QC tensor VR is the average of the QC tensors given by equation (6). V ,  was calculated 
analogously. 

Knowledge of VR and VL enables us now to calculate V,, as a function of p (see 
equation (4)). The results for the two extreme cases p = 0 and p = 1 are presented in 
table 3. The first one corresponds to the p phase. So let us compare the calculated 
V,,,(p = 0) tensor with the QC tensor of the ND3 group of GI obtained at T = 338 K, 
VND3(T = 338 K) (see table 1). The eigenvalues of V,,(p = 0) are indeed close to the 
corresponding ones of VND3(T = 338 K), the mean deviation being 2.9 kHz. The prin- 
cipal directions are in good agreement as well, the mean deviation being 0.9”. Apparently 
there is a difference between the asymmetry parameters but both may be considered as 
‘small’ and so far there is agreement. 

V,, for p = 1 corresponds to the f phase far from the phase transition. V,,(p = 1) is 
to be compared with the experimental data obtained at T = 281 K = T, - 50 K, 
V N D 3 (  T = 281 K) (see table 2). Apart from the asymmetry parameters qcaIc = 0.416 and 
qexp = 0.291, the agreement between calculated and measured QC tensors is again satis- 
factory. For a rapidly reorienting symmetric ND3 group we expect q = 0. Both the 
calculation and the experiment give ‘intermediate’ values of q ,  indicating clearly a 
significant deviation of the ND, group from C3 symmetry. As the bond angle and bond 
length (Size-Of-QCC) effects on q are intricately interwoven, we dispensed with trying to 
improve the agreement between calculated and experimental asymmetry parameters by 
adjusting the bond angles and lengths. 
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IPl 

Figure 5. Calculated relations between the order parameter p and ( a )  the QCC of the ND, 
group of GI and ( b )  the angle cr defined in the text. 

280 300 320 340 280 300 3 20 3LO 
T ( K )  T ( K J  

Figure 6. The temperature dependence of (a )  the QCC of the ND3 group of GI and ( b )  the 
angle (Y,,~. 

The general good agreement between the calculated and experimental QC tensors in 
the limiting cases encourages us to interpret the experimental results in the intermediate 
temperature range with the help of equation (4). 

In figure 5 we present the predicted variation withp of the QCC and of the angle IY = 
[ e l ( p ) ,  e , (p  = O ) ] ;  e, denotes the unique principal direction of V&), which is the one 
associated with the largest principal component. The QCCS and the directions of the z-  
principal axes of the measured QC tensors of the ND, group of GI are given in table 2. 
An experimental angle me,, may be defined in analogy to W. By comparing the values of 
the QCC and of aeXp measured as a function of the temperature (see figure 6) with the 
corresponding calculated quantities as a function of the order parameter p ,  we are able 
to determine the temperature dependence of this quantity. The results of this comparison 
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Figure 7. The temperature dependence of the spontaneous polarisation P, (0) and order 
parameterp(+, 4) i n  DTGS(ND?). Thevaluesofparederivedfromacomparisonofcalculated 
(+) and experimental (*) values of QCC and CY, respectively. 

are shown in figure 7 in which we have also plotted the spontaneous polarisation P, 
measured in a DTGS(ND~) crystal by Stankowska (1985). Generally the character of the 
temperature dependence of all the plotted quantities is the same. The full curve in figure 
7 is a plot of f ( T )  = B[(Tc - T)/T,]o, with B = 1.49 and /3 = 0.28. According to the 
Landau theory the critical exponent /3 is 0.5 if the phase transition is of second order, as 
it is in the case of fully protonated TGS. The smaller value of obtained here may be due 
either to the fact that a rather large range A T  of temperatures has been included into 
the fit of the data in figure 7 and/or to the fact that the phase transition in DTGS is 
intermediate between first and second order. One should notice here that in triglycine 
selenate, which is isomorphic to triglycine sulphate, deuteration of the crystal causes a 
change of the order of the phase transition from second to first. 

Above we have shown that the QC tensor of the ND, group of GI  in both the p and f 
phases of DTGS(ND~) is described well by the order-disorder model. However, essen- 
tially the same deuteron NMR data have been interpreted before according to the 
displacive model (Blinc et a1 1967, Bjorkstam 1967, Hoffmann and Szczepaniak 1979). 
The following arguments were brought forward against the order-disorder model: 

(i) The experimental value of q of the QC tensor of the ND group of GI in the p 
phase is much smaller than expected for the order-disorder model (Blinc et a1 1967). 

(ii) The temperature dependence of the orientation of the unique principal direction 
of the QC tensor of the ND3 group could well be interpreted in terms of the displacive 
model by assuming that this direction is parallel to the direction of the C-N bond of 
g!ycine GI (Hoffmann and Szczepaniak 1979). 

(iii) In the experimental spectra there is no evidence of broadening of the resonance 
lines of the ND, group of GI near T,, which is considered to be in contradiction with the 
order-disorder model (Bjorkstam 1967). 

The first of these arguments is based on the assumption that the ND group rotates 
around a three-fold symmetry axis. As we have discussed above, this assumption is not 
valid. Only when the realistically calculated QC tensor of the ND3 group is averaged ouer 
theflip motion does the asymmetry parameter assume a small value (see table 3) .  

We reject argument (ii) mainly because it contradicts the neutron diffraction data 
(Kay 1977). The temperature dependence of the unique principal direction of the QC 
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tensor of the ND, group can be well explained by the order-disorder model. All that is 
needed is to accept the idea that the flip rate is fast both above and below T,, i.e. that 
there is no  critical slowing down of the flip rate at T,. 

This brings us to argument (iii). The lack of line broadening can be explained 
naturally if one assumes that the flip rate is fast on the scale of the quadrupole splittings 
at all temperatures where the order parameter p differs significantly f rom unity. This 
assumption means that the flip rate is fast in the p phase and, again, that there is no 
critical slowing down of this rate. In § 4 we demonstrate that the flip rate in the p phase 
is indeed very fast. 

3.2.3. CD2groups ofglycine GZand GZZ. The spectra of DTGs(CDz) in thep phase consist 
of six pairs of lines. Two pairs arise from the CD, group of GI1 and two from GII'. GI11 
and GIII' are magnetically equivalent to GI1 and GII', respectively, and so contribute 
to the same lines. Because GI1 and GII' are related by the plane MP, the four QC tensors 
that result from the four line pairs can be grouped into two pairs, which are symmetry- 
related. As GI and GI'  are magnetically equivalent, too, they only give rise to two 
line pairs. Again, the two resulting tensors must be symmetry-related. Altogether we 
therefore obtain three independent QC tensors, which we called VI, VII, and VII, in table 
1, anticipating their assignment. 

VII, and VII, are nearly axially symmetric, qIr2  = 0.080, qrI ,  = 0.070. Comparison 
of the unique principal axes of VII, and VII, with the neutron data of Kay (1977) reveals 
that these axes are parallel to the C-D8 and C-D9 bond directions of GI1 within 2", so 
that VII, and VII, can be assigned to these deuterons of GII. 

The large value of qI = 0.285 is immediate evidence that VI represents an averaged 
tensor. The unique principal axis of VI is nearly symmetric to the C-D2L and C-D2R 
bond directions of GI as determined by Kay (1977). It follows that the CD2 group in GI, 
actually the CDTNH3 group, undergoes a flip motion between the two directions. This 
observation confirms the validity of the order-disorder model of the phase transition 
and completely rules out any displacive model. 

In the next step we determine the QC tensors VI, and VIR, which belong to deuteron 
D2 in the left (D2,) and in the right (D2R) position, respectively. These tensors are 
needed to analyse the spin-lattice relaxation data to be presented in § 4  and their 
knowledge enables us to derive C-D2 and C-D3 bond directions, which are more 
trustworthy than those derived from the neutron scattering data of Kay (1977). Because 
of the plane MP, deuteron D3 behaves in a symmetrical way and need not be considered 
separately. 

As in the p phase the L and R positions are occupied equally, we get, according to 
equation (4), 

VI = $(VI, + V I R ) .  (7) 
A total of 10 independent components are needed to describe VI, and VIR. Five inde- 
pendent equations for them are given by equation (7). To determine VI, and VI, fully 
we need additional information. As such we could take the CrD2, and CrD2R bond 
directions derived from the neutron scattering data. These are listed in table 4. The 
unique principal axis of VI is symmetric to those bond directions only within 7". Therefore 
we do not use the neutron data as additional information. 

Instead we assume that for glycine the QC tensor of a carbon-bonded deuteron is a 
transferable property from site to site. The similarity of the sets of eigenvalues of the QC 
tensors of D8 and D9 of GI1 immediately supports this assumption. Therefore it is 
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Table 4. C-D bond directions in the p phase of TGS according to the neutron data of Kay 
(1977). His data for D2 yield C-D2,; C-D2Lis obtained by a reflection of C-D3R with regard 
to the plane MP. 

Glycine Bond e cp (dei9 

GI C-D2L 45.1 309.1 
C - D ~ R  101.7 113.7 

GI1 C-D8 124.1 318.8 
C-D9 89.9 69.8 

Table 5.  QC tensors of deuteron D2 in its left (L) and right (R) positions in the p phase of 
DTGS(CDJ determined as described in text. 

238.9 43.8 306.3 

-110.5 133.5 316.3 

238.9 95.1 110.7 
-128.4 59.3 23.7 159.3 0.075 
-110.5 31.2 192.1 

V I L  -128.4 85.0 41.6 159.3 0.075 

reasonable to assume that the eigenvalues of VI, and VIR are equal to the respective 
averaged eigenvalues of VII, and VII,. This establishes four further independent 
relations among the components of VI, and VIR. A final relation can be deduced from 
the observation that the axis of rotation which transfers VI, into VIR must lie on the plane 
MP for symmetry reasons. 

The resultant system of 10 non-linear equations for the components of VIL and VIR 
can easily be solved numerically. The tensors VI, and VIR obtained in this way are listed 
in table 5 .  

From experimental (see e.g. Muller et a1 1984) as well as theoretical work (e.g. 
Weeding et a1 1985), it is known that the bond direction of a carbon-bonded deuteron 
coincides to within less than 1" with the unique principal direction of the deuteron QC 
tensor. We therefore equate the unique principal axes of VI, and VIR with the C-D2, 
and C-D2R bond directions. They differ by 7" and 3" from Kay's (1977) neutron dif- 
fraction data. As a test for the accuracy of our procedure of deriving C-D bond directions 
we calculated the bond angles of the CN carbons of GI and GII, on the one hand on the 
sole basis of the neutron data, and on the other hand by taking for the C-D bond 
directions those determined by NMR (see table 6). We recall that the CN carbon of 
glycine is sp3 hybridised, which implies that the bond angles should display tetrahedral 
symmetry. 

For GI1 the CN bond angles are indeed very close to the tetrahedral angle of 109.5". 
The closest approach to tetrahedral symmetry is obtained if the C-D bond directions 
derived by deuteron NMR are taken. It is not clear whether this improvement indicates 
that our NMR data of GI1 are more precise than the neutron data or if it only means that 
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Table 6. Bond angles of the CN carbon in G I  and GI1 in the p phase Of TGS. N: calculated from 
the neutron structure data. NMR: calculated from the NMR data for the C-D and from the 
neutron data for the C-C and C-N bond directions. 

Bond angle (deg) 

Group Bond N NMR 

G I  D2-Ch-D3 
D2-CFI-C 
D2-CrN 
D3-CrC 
D3-Cb-N 
C-CrN 

GI1 D8-CrD9 
D8-Ch-C 
D8-CN-N 
D9-Ch-C 
D9-Cp.rN 
C-C,sN 

100.0 
108.0 
114.2 
109.6 
109.6 
114.5 

107.3 
111.9 
110.8 
109.8 
106.6 
110.2 

108.1 
106.7 
109.2 
107.2 
110.8 
114.5 

109.2 
109.7 
110.7 
109.6 
107.8 
110.2 

the QC and hence electric field gradient (EFG) tensors have a stronger tendency than the 
carbon bonds to form tetrahedral angles. 

The bond angles of CN of GI derived solely from the neutron data deviate up to lo" 
from 109.5'. They conform significantly better to tetrahedral symmetry if the NMR data 
are taken. This is a strong argument for their correctness. It is interesting to note that 
those bond angles of CN from GI  which involve the C-CN bond deviate from the 
tetrahedral angle by up to 5', even if we take the NMR directions for the CrD bonds. 
This points to an inaccurate CN position in Kay's (1977) data, which is undoubtedly due 
to the motion of the whole C,H2-NH3 group. This statement should not be misinter- 
preted as saying that we question the general validity of Kay's structural work on TGS. 

4. Spin-lattice relaxation 

4.1. Experimental results 

The orientation dependence of the deuteron spin-lattice relaxation rates l /T1 of the 
various deuterons of DTGs(ND3) samples was measured at T = 338 K, using the sequence 

where ( 7 ~ / 2 ) ~ ~ ~  denotes a 

composite n / 2  pulse with w1-2 = 20" (Slosarek and Haeberlen 1986). The free induction 
decay (FID) following the second ( 7 ~ / 2 ) , ~ ~  pulse was recorded, Fourier-transformed and 
the height of both components of each line pair measured. The ND, groups of GII/III 
relax 'fast', T I  L- 5 ms, and the deuterons in the hydrogen bonds SHB and LHB relax 
'slowly', T ,  = 30 s. The actual values depend on the crystal orientation. Here we focus 
attention on the ND3 group of GI,  which relaxes at an intermediate rate, T I  -- 150 ms. 
For the determination of the orientation dependence of l/T1 of this group we chose only 

(n/2)eff-l-(n/2) eff 

20;--2-1 l0Tx 
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Figurel. The orientation dependence of the spin-lattice relaxation time T I  of the ND3group 
o f G I i n ~ ~ G s ( N D ~ ) a t  T =  338K. ( a ) B , l  (lO1),B,~~bforrp=Oo;(b),B,IBo~((~O1)* for 
rp = 0"; (c) Bo I ( iOl )* ,  Bo 11 b for rp = 0". Broken curves : expected orientation dependence 
of T ,  for displacive model. Full curves: best fit to equation (20); see text. 

Table 7. Temperature dependence in p phase of relaxation rate 1 /T ,  of deuteron D2 in 
DTGS(CD?) forB,,parallel to (102)*. 

Temp. (K) 323 33s 347 361 
U T ,  (s-7 0.48 0.48 0.50 0.47 

those crystal orientations where the resonance lines of the -ND3 group of GI were well 
resolved. The results are shown in figure 8. 

In the case of DTGS(CD~) the temperature dependence of l/T1 was measured from 
323 to 360 K for one particular crystal orientation. The results are listed in table 7. 

4.2. Discussion 

4.2.1. ND3group o f G I i n p p h a s e .  The most important feature of the data presented in 
figure 8 is a pronounced orientation dependence of l/T1. In what follows we shall relate 
it to the dynamic order-disorder model. To do so we first derive an expression for the 
relaxation rate of an ND3 group, which carries out rotational jumps with a correlation 
time z, as well as flips with a correlation time tf. Both these motions cause relaxation by 
modulating the electric field gradient and thus the QC tensor at the site of the deuterons. 
For each deuteron the instantaneous QC tensor with quadrupole coupling constant QCC 
is assumed to be axially symmetric about the direction of the N-D bond. For the present 
purpose it is adequate to assume C3 symmetry with regard to the rotational jumps. The 
relaxation rate 1/T, is given by (Spiess 1978) 

where o is the nuclear Larmor frequency and 
w1 = (2/9).n2[4g22(24 +4g2.-2(-2w) +g*,1(w) +g2.-1(-w)I (8) 

(9) g / m  (no) = Iox f i m  (z) exp(inwr) d z 

is the spectral density of the correlation function 

The V ,  are the spherical components of thepuctuating part of the QC tensor. To specify 
f i n i ( ~ )  = (V/m(t)VL(t + (10) 
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X' 

Figure 9. Reference frames introduced for describing a flipping and jumprotat ing NH, 
group; see text. 

the time dependence of the V,, we define three different reference frames, which are 
shown in figure 9. The 2 axis of the first one ( X ,  Y ,  Z) is parallel to the assumed C3 
symmetry axis of the ND3 group. Y lies in the plane MP. We then need an intermediate 
frame Xi, Y, ,  Zi with Xi normal to the MP plane, YillY is normal to the plane spanned by 
the C3 symmetry axis in the left (Z,) and right (Z,) positions of the flipping ND3 group, 
with Zi bisects ZL and ZR. The flip angle is 2tp. The third is the laboratory frame x ,  y ,  z 
with z parallel to the magnetic field Bo. It is related to the Xi, Yi, Zi frame by the Euler 
angles a, j3, y ( y  is actually redundant). QC tensor components in these frames are 
denoted by V k ,  V ) ,  and V,, , respectively. A caret ( ^ )  is used to denote tensor com- 
ponents with zero time average. 

In the X ,  Y ,  Z frame the QC tensor has the following form: 

v%(t) = (3/4)d(3/2) QCC 3 (cos2 e - 1) 

V y k 1  ( t )  = +(9/8) QCC sin 28  exp[.iq(t)] 

v?,,(t) = -+(9/8) QCC sin2 e exp[72iq(t)]. 

(11) 

Here 0 is the angle between the N-D bond and the C3 axis; q ( t )  can assume three values: 
qo, q i  = qo +120". Transformingthe V k  to theintermediateframex,, Yi, Z,weobtain 

v;, = (3/2)d(3/32) QCC {(3 cos2 e - 1)[3 cos2q(t) - 11 

+ 3 sin 28  sin 2q(t) cos q( t )  

+ 3 sin28 sin2q(t) cos 2 q ( t ) }  

= t(9/16) QCC {sin 2tp(t)(3 cos2 e - 1) - 4 sin 28 cos2q(t) cos q( t )  

+ 2 sin2 e sin q(t)[+-i sin 2q(t) - cos ~ ( t )  cos2q(t)] 

+ 2 sin  COS q(t) t i cos tp(t) sin q(t)]}  

VL,+2 = (9/16) Qcc{sin2 q(t)(3 cos2e - 1) 

+ 2 sin 2 8  sin q ( t ) [ t i  sin q(t) -cos q(t) cos ~ ( t ) ]  

+ sin28[(1 +cos2q(t))  cos 2q(t) 7 2i cosq(t) sin2q(t)]}. 
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To get thefluctuatingpart of the Vi,  we must subtract the time averages 

= (3/2)V(3/32) QCC(3 cos2 6 - 1)(3 COS2 q - 1) 
(13) 

= 0 (V\,+2)l  = (9/16) QCC sin2q(3 cos26- 1) 

The time-dependentparts of the Vi,,, with zero time average are 

Vbo(t) = (9/8)d(3/2) QCC [sin 28 sin 2q(t) cos q(t) + sin2 q(t) sin26 cos 2q(t)] 

V\ .+ l ( t )  = +(9/16) QCC {sin 2q(t)(3 cos2 e - 1) - 4 sin 26 cos2q(t) cos q(t) 

+ 2 sin26 sin 

+ 2 sin 26[cos q(t) + i  cos q(t) sin q(t)]} 

V\3+2(r )  = (9/16) acc(2 sin 26 sinq(t)[-+i sin q(t) -cos ~ ( t )  cos q(t)] 

(t)[*i sin 2q(t) - cos ~ ( t )  cos 2q(t)] 
(14) 

+ sin28[(1 +cos2q(t))  cos2q(t)) ~ 2 i c o s  q(t) sin2q(t)]}. 

The Vim( t )  must now be transformed into the laboratory frame, 

where Dinm(cv,  P ,  y )  is the Wigner rotation matrix. 
The correlation functions (equation (10)) contain terms like (cos q(t) cos q(t)  

cos q(t+ z) cos q(r + t)). To evaluate these expressions we assume statistical inde- 
pendence of the jumprotation and flip motions, which means 

(cos q(t) cos q(t) cos q ( t  + z) cos q ( t  + t)) 
= (cos q(t)  cos q(t + z))(cos q(t) cos q(t + z)). (16) 

The factored correlation functions (equation (16)) are calculated according to the 
general prescription 

n n  

where all symbols have their standard meaning. The conditional probabilities 
P(i, tlj, t + z) are derived from the Kolmogorov equation (Toda et a1 1983). For the 
jumprotation motion there are three equivalent sites (i.e. n = 3): 

p i  = 5 i = 1 , 2 , 3  

4 + %exp (-z/z,) 

4 - 5 exp( - z/z,) 

for i  = j  

for i =+ j .  
P(i ,  tlj, t + z) = 
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Here t, is the correlation time of the jumprotation process. The corresponding rate is 
52, = l / n t ,  = 1/32,. For the flip motion ( n  = 2): 

p ,  = f  i =  1 , 2  

Here tf is the correlation time of the flips; the flip rate equals Qf = 1/2 tf. 
Using these relations we get, for example, 

(cos q(t) cos q(t + z)) = t exp( - t/t,). 
In going through the algebra terms like (cos q(t) cos 2q( t+ t)) are also encountered. In 
general they are non-zero and depend, unlike (cos q(t) cos q ( t  + z)), on the initial angle 
cpo; they are, in fact, proportional to cos 3 q 0 .  They vanish for qo = *30", 290". Note 
that these are the only angles qo for which a flip leads to a mirror reflected orientation 
of the ND3 group with respect to the YiZ,-plane which in TGS is the mirror plane MP. 
According to the structural data of DTGS qo = 84". This is close enough to 90" to justify 
dropping the terms depending on qo. Collecting the remaining ones we finally get 

Zf 
(3 cos2 6 - 1) sin' y ( A ,  1 + 4 w  2 tf  , + A 2  

t C  

1 9  
Ti 64 
-= -  

+ sin2 20 [ sin2 qj (A3 1+4w 2 t, , + A 4  

+ A5 

where z, is defined by 
l / t c  = l / z r  + l h f .  

The coefficients A to A , ,  are functions of the Euler angles a and /3 and describe the 
orientational dependence of Ti :  

A ,  = sin2 2/3 cos2 a + 4 sin2 /3 sin2 a 

A 2  = cos' 2/3 cos2 a + cos' /3 sin2 a 

A3 = 6 cos2 1/43 sin4 /3 - 2 cos 2 4 1  - cos4 /3)] + 2(1 +cos2 /3)? 
x (1 - cos2 2a sin2 y') + 8 cosz /3( 1 - sin' 2a sin2 y )  

A4 = 6 cos2 W sin' /3 cos2 /3(3 + 2 cos 2a) 

+ 2 sin2 /3[cos2 ~ ( 1 -  cos2 2a sin' q) + ( I  - sin' 2a sin' y ) ]  
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A ,  = 8 sin’ /3[cos’/3(sin2 a cos’ q + cos’ a cos’ 299) 

+ (cos’ a cos? q + sin’ a cos2 2 q ) ]  
A 6  = 2 cos? 2/3(sin2 (U cos2 99 + cos’ a cos2 214) 

+ 2 cos‘ @(cos’ a cos? y + sin’ a cos2 2q )  

A ,  = 3[$sin4/3sin’ 11,+cos2a(l -cos4fl)(1 +cos2 q)] 
A 8  = 3 sin’ /3 cos’ /3[$ sin’ q -cos 2 4 1  + cos’q)] 

A 9  = 2 sin’ 2/3( 1 - cos? a sin’ y t )  + 8 sin’ /?( 1 - sin’ a sin’ q) 
A 

A l l  = i(1 +cos’ /3)‘[cos’ 2 4 1  +cos’I~)’ +4sin2 2acos’ 991 
= 2 cos’ 2/3( 1 - cos2 a sin’ q) + 2 cos’ /3( 1 - sin2 a sin2 q )  

+ 2 cos’ /?[sin’ 2a(1+ cos‘ q)’ + 4 cos2 2 a  cos2 991 
A = 4 sin’ /3{cos’ /3[cos2 2 4 1  +cos2 y ) 2  + 4 sin2 2 a  cos’ q] 

+ [sin’ 2a(1+ cos‘ q)’ + 4 cos2 2 a  cos’ VI}. 

For equation (20) two limiting cases can be distinguished. The first one, q = O”, 
corresponds to a simple jumprotational motion of the ND, group around the C, 
symmetry axis. It applies to the ND3 groups of GII/III and within the displacive model 
of the phase transition in DTGS to the ND, group of GI as well. The analogous case of a 
CD, group reorientation has been treated by Tang et al(1980). The second limiting case 
of equation (20), q # o”, 8 = 0”, corresponds to a deuteron jumping back and forth 
between two positions. It applies to the relaxation of the deuterons of the CD, group. 
From equation (20) we obtain for q = 0”, 6’ # 0”: 

[sin‘ 8(l + 6 cos’ /3 +cos4 /3) 
1 9  

TI  32 
_ -  

+ 4 sin’ 28(1 - cos4 /3)] 

+ [sin“ e( 1 - cos“ /3) + sin’ 28(4 cos‘ /3 - 3 cos2 /3 + l)]  ~ 

1+4w’t f  

This expression agrees with the result obtained by Tang et a1 (1980). For q # 0”, 6’ = 0” 
we get 

t f  

1 + 4 0 ’ ~ ;  - n’ (QCC)? sin’ 214 4 sin’ /3(cos’ /3 cos’ a + sin2 a) 
1 9  

TI 16 
_ -  - 

+ [cos? a(2 cos’ /3-  1)’ +cos’ /3 sin2 (U] (22) l + 0  tf 

Equation (22) is equivalent to 

T ,  9 + iL t f  

with VR = h(VrR - VIL),  which is the expression for l/T1 for a flipping deuteron given 
by Benz et ul(1986). 

1 4  
- - - - n? ([(v‘:, - V:, 1’ + 4 W ,  1’1 2 2 + [(VfZ)’ + (Vt’J’I 
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We now try to fit the experimental data from DTGS(ND~) shown in figure 8 to equation 
(20). For QCC we take the square root of the average of (Qcc(4))2, (QCC(5))* and 
( o c ~ ( 6 ) ) ~  calculated for deuterons D 4 D 6  in § 3. This average is QCC = 160.3 kHz. 
Likewise we take for 8 the average of 8, of deuterons D 4 D 6 ,  which is 8 = 67". For q ! ~  
we may draw on two sources of information. On the one hand w may be identified with 
aeXp for T < T,, which is 23.8" (see figure 6). On the other hand we recall that the flips 
are actually rotations of the CH2-ND3 group about the C-C, bond. As the bonds of the 
methylene carbon C, are essentially tetrahedral, the flip angle 2li, of the C-N bond is 
equal to that of the C-D2 bond. The flip angle 2 q  of this latter bond follows immediately 
from the C-D2, and C-D2R bond directions, which were determined in § 3, and turns 
out to be 2 q  = 44". This value compares well with 2acXp. 

This leaves us with t, and ti to adjust equation (20) to the experimental data. 
Nevertheless in addition to t, and tf we let the fitting program search for the optimal 
values of 8 and as well. The best fit was obtained for li, = 22.6", 8 = 66.7", t, = 2.2 x 
lO-"s and tf = 1.3 x 1O-"s ('best-fit parameters'). For ut, 1 and o n f  < 1, as found 
here, 1/T, dependson Qcconly via products ( Q C C ) ~  tr, (QCC)'tfand ( Q C C ) t , t f / ( t ,  + tf). 
Therefore it does not make sense to treat QCC as a separate adjustable parameter. The 
full curves in figure 8 represent equation (20) with these parameters inserted. The close 
fit of the full curves to the experimental data demonstrates the validity of the dynamic 
order-disorder model for TGS. It is reassuring and satisfying that the values obtained 
for li, and 8 by the fit of the relaxation data agree excellently with those determined 
independently before. 

The broken curves in figure 8 represent the orientation dependence of 1/T, for the 
displacive model, which is described by equation (21). It is obvious that the 'fingerprints' 
of the models provided by the orientation dependences of 1 / T ,  are sufficiently distinctive 
to tell the two models apart. 

As a matter of fact, an equally good fit of the experimental data to equation (20) 
as that represented by the 'best-fit parameters' is obtained with the following set of 
parameters: q = 27.6", 8 = 71.2", t, = 2.0 x lo-" s and ti = 6.8 x 10-'s. While the 
values of I), 8 and t, differ somewhat, but not in a substantial manner, from those of the 
'best-fit parameters', there is an essential difference regarding the order of magnitude 
of zf. One might be tempted to favour this set of parameters because intuitively we 
expect that the flips of the bulky CH2-ND3 group occur on a much slower timescale than 
the rotational jumps of the ND3 group alone. The relaxation data alone are not sufficient 
to decide whether tf = 6.8 X 10-6s or tf = 1.3 X lo-" s. The important decision 
between these two values is made possible by considering the spectra and relaxation 
data of the CD2 group, to which we turn now. 

4.2.2.  CD, group. In figure 10 three deuteron spectra from DTGS(CDJ are shown. In 
the spectrum from the p phase (top) we indicate the assignment of the lines from the 
CD2 group of GI. In this spectrum we observe from D2 a single line pair arising from an 
average of VI, and VIR with equal weights pL and pR. On cooling the crystal below T, 
the line splits into two components corresponding to domains with pL - pR > 0 and 
pL - pR < 0. At T < T, - 40 K a saturation of the line splitting is reached and the two 
lines correspond to the QC tensors VI, and VIR of deuteron D2 in the L and R positions. 
The observed frequency difference is AV = 93 kHz. The width (FWHM) of an N M R  line 
of a deuteron flipping between two sites with equal site occupancies is given in the 
coalescence regime (Abragam 1961) by 

where l / (nT , )  is the width in the absence of flips. If we equate the measured width 
6 v  = 1 / ( n T 2 )  + n A u 2 z f  (24) 
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Figure 10. Temperaturedependenceofdeuteron Fourier-transformspectrumofDTGS(CD2). 
Same crystal orientation as in figure 3. Note the splitting of the lines from D2 as the 
temperature is loweredinto the fphase. Note also how little the linessplit from the methylene 
groups of GII/III. 

c5veXp = 2.4 kHz with n A v 2 t ,  and insert A V  = 93 kHz we get an upper limit for tf, which 
is t p P P e r ' i m i t )  = 9 X s. This value definitely rules out the set of fit parameters with 
tf = 6.8 X s and we may conclude unequivocally that the correlation time of the 
flips of the CH2-ND, groups is tf = 1.3 x lo-" s.  The estimated error is 0.2 x lo-" s.  

As mentioned earlier our measurements of l /T1 of the CD2 group enable us to 
determine tf in an independent manner. The relaxation rate of this group is described 
by equation (23). As VI, and VIR have been determined before (see table 5) zf is the only 
unknown parameter on the right-hand side of equation (23). According to table 7 
l /T l  = (0.48 * 0.02) s-' for T = 323-361 K. Transforming Vfl = 4(VI, - VIR) from the 
standard orthogonal to the laboratory frame for the particular crystal orientation chosen 
for the T, measurements, inserting the appropriate components of Vfl (lab. frame) into 
equation (23) and solving for tf yields tf = (1.2 i 0.2) x lo-" s. This value agrees with 
the result derivedfrom the ND3 relaxation data. We note in passing that there is a second 

The finding that in the p phase of TGS the CH2-ND3 group of GI flips by an angle 
21.) = 44" with a correlation time as short as 1.2 X lo-" s is the key experimental result 
of this work. It implies exceptional freedom of this group to move in the crystal lattice. 
This statement is strengthened by observing that the correlation time of the rotational 
jumps of the ND, part of this group, t, = 2.1 x lO-"s, is much shorter than the cor- 
responding time for the ND, groups of GII/III, which is about 6 x lO-''s. This value is 
obtained by inserting the observed relaxation time of this group, T I  = 5 ms, into equation 
(21). taking the same values for QCC and 8 as above and solving for t,. The conclusion 
that the NH3 groups of GI are more mobile than those of GII/III has also been inferred 
from proton relaxation measurements (Slosarek et a1 1982). 

As the relaxation rate of the CD2 deuterons hardly changes in the temperature range 
from 323 to 361 K (see table 7) we must conclude that tf itself is essentially independent 
of Tin that range, which is a very surprising result. 

solution with tf = 3.3 x s, which is ruled again out by t p p p e r ' i m ' t )  = 9 x 10-8 s.  
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It has, however, a counterpart in the temperature and frequency dependence of the 
dielectric relaxation of TGS, which has been measured carefully by Luther (1973). While 
the macroscopic dielectric relaxation time t, varies significantly with Tin the p phase of 
TGS, Luther finds that the corresponding microscopic quantity to = 1/(27cf0) = 
z , / ( E , ~ ~ ~ ~ ,  - E % ) ,  where fo is the ‘characteristic frequency’, is independent of T as is tf. 
The value of to  derived by Luther is, however, as short as 7 X lO-I4s and is hardly 
realistic as a correlation time for a molecular unit of the size of a CH2-NH3 group. We 
recall that dielectric measurements give no clue as to which molecular group is connected 
with the observed relaxation process. By contrast, our deuteron NMR measurements 
demonstrate conclusively that it is the CD2-NH3 (CH2-ND3) group of the ion GI that 
flips about the C-C bond with a correlation time of (1.2 ? 0.2) X lo-” s.  

We recall that the determination of the microscopic quantity to involves a theoretical 
model that transfers the directly measured macroscopic relaxation t, into a local quanti- 
ty. Also, it is worth while pointing out that we find essentially the same values of tf 
for the CD2-NH3 and CH2-ND3 groups despite the fact that the phase transition 
temperature T, is different in DTGS(CD2) and DTGS(NDJ by as much as 10 K. This may 
be taken as a hint that the phase transition itself is not triggered by the CH2-NH3 groups 
of GI, but by the dynamics of the proton (deuteron) in the ‘short’ hydrogen bond. 
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